Sunday, 17 March 2024

Bot to read our local PDF and answer using Openai, Embeddings, Langchain & Streamlit

Chat with PDF  | Chatbot Bio-query use case

In visual code Studio, creat directory usecase3 and creat a file search.py

pip install chatpdf

load and split pdf

Create a file names search.py

#load and split pdf

from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader("test.pdf")
pages_content = loader.load_and_split()
print(len(pages_content), pages_content)


You will get dictionary output with filename, meta data, page no etc.

Now type as below and Run

#load pdf and split

from langchain.document_loaders import PyPDFLoader
loader = PyPDFLoader("test.pdf")
pages_content = loader.load_and_split()
#print(len(pages_content), pages_content)

# #refer openai api embeddings

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain_openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS


embeddings = OpenAIEmbeddings()
db = FAISS.from_documents(pages_content, embeddings)

db.save_local("faiss_index")  # to save local copy

nwdb = FAISS.load_local("faiss_index", embeddings,
                        allow_dangerous_deserialization=True)

query = "are there any educational qualification"
docs  =  nwdb.similarity_search(query) # to create similarity index
# print(docs)

from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI()  # creat chatbot

qa_chain = RetrievalQA.from_chain_type(llm, retriever=nwdb.as_retriever())
res =qa_chain({"query" : "are there any educational qualification"})
print(res)

Save and Run as streamlit run app.py  to get streamlit.app tab in the browser 

Pl. double click the image to see clearly. 

Now type in the text window Educational qualification in bullet points  
and then press play button. You may get the screen as shown below:


Wow ! we have done a chatbot answering questions from my test.pdf

This is the simplest way with openai, embeddings, langchain and streamlit we could develope our custom made chatbot. This is the beginning. You can change code in app.py by refereinng streamlit documentation  to change your frontent and enjoy!!!😊😊😊😊😊😊😊😊
Please use your PDF and change queries as per your PDF.🎈

No comments:

Post a Comment

Green Energy - House Construction

With Minimum Meterological data, how i can build model for Green Energy new construction WIth Minimum Meterological data, how i can build m...